

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyChan 0.2.1 documentation

pyChan: Go-style channels for Python

Release v0.2.

pyChan implements Go’s chan type in Python, making concurrent programming
in Python simple.

Install using pip install chan

Source code at http://github.com/stuglaser/pychan

API Reference

Usage

You can use Chan.put() to place items onto a Chan, and
Chan.get() to receive them:

c = Chan()

Thread 1
c.put("Hello")

Thread 2
print "Heard: %s" % c.get()

Channels can be closed (usually by the sender).
Iterating over a channel gives all values until the channel is closed

c = Chan()

Thread 1
c.put("It's")
c.put("just")
c.put("contradiction")

Thread 2
for thing in c:
 print "Heard:", thing

You can wait on multiple channels using chanselect(). Pass it a list of input channels and another of output channels, and it will return when any of the channels is ready

def fan_in(outchan, input1, input2):
 while True:
 chan, value = chanselect([input1, input2], [])
 if chan == input1:
 outchan.put("From 1: " + str(value))
 else:
 outchan.put("From 2 " + str(value))

You can see more examples in the “examples” directory.

Contents:

	API Reference
	Exceptions

	Chan Object

	Multiplexing with chanselect

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Stuart Glaser.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyChan 0.2.1 documentation

API Reference

This document describes the functions and objects used in pyChan.

Exceptions

	
class chan.Error

	Base exception class for chan.

Just inherits from Exception

	
class chan.ChanClosed(which=chan)

	Since ChanClosed inherits from Error, it has
the same parameters as Exception, with one addition:

	Parameters:	which – Keyword argument, indicating the Chan that
was closed.

	
which

	Contains the Chan object which was closed.

	
class chan.Timeout

	Raised when an operation times out.

Chan Object

	
class chan.Chan(buflen=0)

	Chan objects allow multiple threads to communicate.

	Parameters:	buflen – Defines the size of the channel’s internal buffer, or 0 if
the channel should be unbuffered. An unbuffered channel
blocks on all put/get’s, unless a corresponding get/put is
already waiting, while a buffered channel will accept puts
without blocking as long as the buffer is not full.

	
close()

	Closes the channel, allowing no further put operations.

Once close is called, the channel allows in-progress put
operations to complete and the buffer to clear, and then

	
closed

	Returns True if the channel is closed.

It may be better to call put or get and handle the
ChanClosed exception.

	
get(timeout=None)

	Returns an item that was put onto the channel.

get returns immediately if there are items in the channel’s buffer
or if another thread is blocked on put. Otherwise, it blocks until
another thread puts an item onto this channel.

	Parameters:	timeout – An optional floating point number representing the
maximum amount of time to block, in seconds. If the
timeout expires, then a Timeout error is
raised.

	Raises :	ChanClosed If the channel has been closed, the buffer is empty, and no threads are waiting on put.

	
put(value, timeout=None)

	Places an item onto the channel.

put returns immediately if the channel’s buffer has room, or if
another thread is blocked on get. Otherwise, put will block
until another thread calls get.

	Parameters:	
	value – The value to place on the channel. It is unwise to
modify value afterwards, since the other thread will
receive it directly, and not just a copy. It can be any
type.

	timeout – An optional floating point number representing the
maximum amount of time to block, in seconds. If the
timeout expires, then a Timeout error is
raised.

	Raises :	ChanClosed If the channel has already been closed.

Multiplexing with chanselect

	
chan.chanselect(consumers, producers, timeout=None)

	Returns when exactly one consume or produce operation succeeds.

When this function returns, either a channel is closed, or one value has
been pulled from the channels in consumers, or one value has been
pushed onto a channel in producers.

chanselect returns different values depending on which channel was
ready first:

	(Chan, value) – If a consume channel is first.

	(Chan, None) – If a produce channel is first

	Raises ChanClosed(which=Chan) - If any channel is closed

	Parameters:	
	consumers – A list of Chan objects to consume from.

	producers – A list of (Chan, value), containing a channel
and a value to put into the channel.

	timeout – An optional floating point number specifying the maximum
amount of time to block. If no channel is ready by this
time, then a Timeout error is raised.

Here’s a quick example. Let’s say we’re waiting to receive on channels
chan_a and chan_b, and waiting to send on channels chan_c and
chan_d. The call to chanselect looks something like this:

ch, value = chanselect([chan_a, chan_b],
 [(chan_c, 'C'), (chan_d, 'D')])
if ch == chan_a:
 print("Got {} from A".format(value))
elif ch == chan_b:
 print("Got {} from B".format(value))
elif ch == chan_c:
 print("Sent on C")
elif ch == chan_d:
 print("Sent on D")
else:
 raise RuntimeError("Can't get here")

 Copyright 2013, Stuart Glaser.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	pyChan 0.2.1 documentation

 Python Module Index

 c

 			

 		
 c	

 	
 	
 chan	

 Copyright 2013, Stuart Glaser.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	pyChan 0.2.1 documentation

Index

 C
 | E
 | G
 | P
 | T
 | W

C

 	

 	Chan (class in chan)

 	chan (module), [1]

 	ChanClosed (class in chan)

 	

 	chanselect() (in module chan)

 	close() (chan.Chan method)

 	closed (chan.Chan attribute)

E

 	

 	Error (class in chan)

G

 	

 	get() (chan.Chan method)

P

 	

 	put() (chan.Chan method)

T

 	

 	Timeout (class in chan)

W

 	

 	which (chan.ChanClosed attribute)

 Copyright 2013, Stuart Glaser.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pyChan 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Stuart Glaser.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

