
pyChan Documentation
Release 0.2.1

Stuart Glaser

July 04, 2013

CONTENTS

i

ii

pyChan Documentation, Release 0.2.1

Release v0.2.

pyChan implements Go’s chan type in Python, making concurrent programming in Python simple.

Install using pip install chan

Source code at http://github.com/stuglaser/pychan

API Reference

CONTENTS 1

http://github.com/stuglaser/pychan

pyChan Documentation, Release 0.2.1

2 CONTENTS

CHAPTER

ONE

USAGE

You can use Chan.put() to place items onto a Chan, and Chan.get() to receive them:

c = Chan()

Thread 1
c.put("Hello")

Thread 2
print "Heard: %s" % c.get()

Channels can be closed (usually by the sender). Iterating over a channel gives all values until the channel is closed

c = Chan()

Thread 1
c.put("It’s")
c.put("just")
c.put("contradiction")

Thread 2
for thing in c:

print "Heard:", thing

You can wait on multiple channels using chanselect(). Pass it a list of input channels and another of output
channels, and it will return when any of the channels is ready

def fan_in(outchan, input1, input2):
while True:

chan, value = chanselect([input1, input2], [])
if chan == input1:

outchan.put("From 1: " + str(value))
else:

outchan.put("From 2 " + str(value))

You can see more examples in the “examples” directory.

Contents:

1.1 API Reference

This document describes the functions and objects used in pyChan.

3

pyChan Documentation, Release 0.2.1

1.1.1 Exceptions

class chan.Error
Base exception class for chan.

Just inherits from Exception

class chan.ChanClosed(which=chan)
Since ChanClosed inherits from Error, it has the same parameters as Exception, with one addition:

Parameters which – Keyword argument, indicating the Chan that was closed.

which
Contains the Chan object which was closed.

class chan.Timeout
Raised when an operation times out.

1.1.2 Chan Object

class chan.Chan(buflen=0)
Chan objects allow multiple threads to communicate.

Parameters buflen – Defines the size of the channel’s internal buffer, or 0 if the channel should
be unbuffered. An unbuffered channel blocks on all put/get’s, unless a corresponding get/put is
already waiting, while a buffered channel will accept puts without blocking as long as the buffer
is not full.

close()
Closes the channel, allowing no further put operations.

Once close is called, the channel allows in-progress put operations to complete and the buffer to clear,
and then

closed
Returns True if the channel is closed.

It may be better to call put or get and handle the ChanClosed exception.

get(timeout=None)
Returns an item that was put onto the channel.

get returns immediately if there are items in the channel’s buffer or if another thread is blocked on put.
Otherwise, it blocks until another thread puts an item onto this channel.

Parameters timeout – An optional floating point number representing the maximum amount of
time to block, in seconds. If the timeout expires, then a Timeout error is raised.

Raises ChanClosed If the channel has been closed, the buffer is empty, and no threads are
waiting on put.

put(value, timeout=None)
Places an item onto the channel.

put returns immediately if the channel’s buffer has room, or if another thread is blocked on get. Other-
wise, put will block until another thread calls get.

Parameters

• value – The value to place on the channel. It is unwise to modify value afterwards, since
the other thread will receive it directly, and not just a copy. It can be any type.

4 Chapter 1. Usage

pyChan Documentation, Release 0.2.1

• timeout – An optional floating point number representing the maximum amount of time
to block, in seconds. If the timeout expires, then a Timeout error is raised.

Raises ChanClosed If the channel has already been closed.

1.1.3 Multiplexing with chanselect

chan.chanselect(consumers, producers, timeout=None)
Returns when exactly one consume or produce operation succeeds.

When this function returns, either a channel is closed, or one value has been pulled from the channels in
consumers, or one value has been pushed onto a channel in producers.

chanselect returns different values depending on which channel was ready first:

•(Chan, value) – If a consume channel is first.

•(Chan, None) – If a produce channel is first

•Raises ChanClosed(which=Chan) - If any channel is closed

Parameters

• consumers – A list of Chan objects to consume from.

• producers – A list of (Chan, value), containing a channel and a value to put into the chan-
nel.

• timeout – An optional floating point number specifying the maximum amount of time to
block. If no channel is ready by this time, then a Timeout error is raised.

Here’s a quick example. Let’s say we’re waiting to receive on channels chan_a and chan_b, and waiting to
send on channels chan_c and chan_d. The call to chanselect looks something like this:

ch, value = chanselect([chan_a, chan_b],
[(chan_c, ’C’), (chan_d, ’D’)])

if ch == chan_a:
print("Got {} from A".format(value))

elif ch == chan_b:
print("Got {} from B".format(value))

elif ch == chan_c:
print("Sent on C")

elif ch == chan_d:
print("Sent on D")

else:
raise RuntimeError("Can’t get here")

1.1. API Reference 5

pyChan Documentation, Release 0.2.1

6 Chapter 1. Usage

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

7

pyChan Documentation, Release 0.2.1

8 Chapter 2. Indices and tables

PYTHON MODULE INDEX

c
chan, ??

9

